Exam Seat No:_____

_____ **C.U.SHAH UNIVERSITY Summer Examination-2016**

Subject Name: Structural Analysis - I

Subject Code: 4TE03STA1		Branch: B.Tech (Civil)	Branch: B.Tech (Civil)	
Semester: 3	Date: 26/04 /2016	Time: 02:30 To 05:30	Marks: 70	
Instructions: (1) Use of (2) Instruction (3) Draw (4) Assu	of Programmable calculator & any uctions written on main answer bo v neat diagrams and figures (if neo me suitable data if needed.	y other electronic instrument is pook are strictly to be obeyed. cessary) at right places.	prohibited.	
Q-1	Attempt the following questions:		(
1	Point of contra flexure is where (a) bending moment is zero (b) she bending moment diagram changes	ar force is zero (c) shear force dia	gram changes sign (d)	
2	A brittle material exhibits (a) Large plastic deformation (b) la plastic deformation	rge elastic deformation (c) large yi	eld plateau (d) no	
3	A cantilever beam carrying UDL over entire span is to be replaced by a simply supported beam of same span. The maximum bending stress will be (a) reduced by two times (b) reduced by four times (c) increased by four times (d) decreased by four times			
4	A prop cantilever will have (a) 2 (b) 3 (c) 4 (d) 1	reactions.		
5	The strain energy stored in a body (a) $\tau^2 V/2C$ (b) 2C/ τV (c) $\tau^2 V/4C$ (due to shear stress is, d) $2C/\tau^2 V$		
6	Fixed end moment for udl on entire (A) wl/4 (B) wl ² /8 (C) wl/8 (D) wl	e span of fixed beam $^{2}/12$		
7	If both ends are fixed in column the	en what is its effective length?		
8	Fixed beam is loaded with 'W' KN values of fixed end moment at each	/m over entire length 'l' m of the b n support ?	beam then what are the	
9	Define the following: Homogeneous material Statically determinate structure Kernel of section			
	Point of contraflexure			

Radius of gyration

Page 1 || 3

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(a) Draw share force and bending moment diagram for a beam shown in fig.below.

(14)

8

6

(14)

(b) Draw and explain the stress-strain curve for mildsteel

Q-3 Attempt all questions

(a) An assembly of steel bar as shown in figure below is in equilibrium. Find the force P in the 7 net elongation of the assembly. Take $E_s = 2 \times 10^5 N/mm^2$

0-4	(b)	Derive formula for strain energy due to torsion Attempt all questions	7 (14)
Q- 1	(a)	A 200 mm long steel tube, 100 mm internal diameter and 10 mm thick is surrounded by a brass tube of the same thickness and length. The composite section carries an axial compression of 100 kN. Find the load carried by each tube and shortening of each tube . Es = 0.2 MN/mm^2 , $E_b = 0.1 \text{ MN/mm}^2$	8
	(b)	Explain the mohr-circle method for locating principal axes.	6
Q-5		Attempt all questions	
	(a)	A rectangular column section ABCD having side AB=CD=400 mm and BC=AD=300mm carries a compressive load of 300 KN at corner B. Find stress at each corner A,B,C,D and draw stress- distribution diagram for each side.	7
	(b)	A steel bar 50 mm in diameter and 2.5 m long has to transmit a shock energy of 100 Nm. Calculate the maximum instantaneous stress and elongation produced , Take $E= 2 \times 10^5$ N/mm ²	7
0-6		Attempt all questions	(14)
τ.	(a)	Drive kernel (Core) of section for hollow rectangular and circular section.	7
	(b)	Derive the fundamental equation for slope and deflection.	7
Q-7		Attempt all questions	(14)
	(a)	The external and internal diameter of a hollow cast iron column is 200 mm and 150 mm respectively. If the column is hinged at both ends having a length of 4 m, determine the crippling load using rankine formula. Take $fs = 550N/mm^2$ and $\alpha = 1/1600$	7
	(b)	Explain Castingliano's first theorem.	7
Q-8		Attempt all questions	(14)
t -	(a)	Determine the strain energy of a cantilever beam of span 2 m having size 20mm width x 60mm depth. Take $E = 200$ GPa	ັ 7໌

Page 2 || 3

(1) When 1000 N concentrated load is placed at free end.

(2) When total 1000 N load is uniformly distributed over the entire span. Calculate θ_{B} and δ_{B} for a beam shown in figure below ,Take $E = 2 \times 10^{5} \text{N/mm}^{2}$, $I = 5 \times 10^{8} \text{ mm}^{4}$. Use Castigliano's first theorem. **(b)** 7

